An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover.

by Avi Ashkenazi, John W. Winslow, Ernest G. Peralta, Gary L. Peterson, Michael I. Schimerlik, Daniel J. Capon and Janakiraman Ramachandran

An M2 Muscarinic Receptor Subtype Coupled to Both Adenylyl Cyclase and Phosphoinositide Turnover

THE BIOLOGICAL SIGNALS OF MANY hormones and neurotransmitters are transduced into target cells by interaction of their receptors with guanine nucleotide binding (G) proteins, which regulate the activity of effector enzymes such as adenylyl cyclase (AC) (1) and phospholipase C (PLC) (2, 3). Because many receptors have two or more distinct subtypes and are known to interact with more than one effector, correlations between the activation of a specific receptor subtype and a specific effector have been implied (4, 5). Muscarinic acetylcholine receptors (mACHRs) are coupled via G proteins to multiple effector systems including AC, PLC, and cardiac potassium channels (5). Three mACHR subtypes have been distinguished pharmacologically (6) and four genetically (7). Different mACHR subtypes seem to be coupled to different effector systems (8-10). In phospholipid vesicles, reconstituted cerebral mACHRs can interact with the AC inhibitory G protein (Gi) and with G0, a G protein of unknown function (11). However, unambiguous interpretation of studies that use tissues or cells as a source of receptor has been hampered by the existence of multiple receptor subtypes. To better address this question we have studied the effector coupling of a single recombinant M2 mACHR subtype stably expressed in cells that lack endogenous mACHRs.

Chinese hamster ovary (CHO) cells were stably transfected with a vector directing the expression of the porcine atrial M2 mACHR complementary DNA (12). A mouse dihydrofolate reductase (DHFR) gene served as a selectable marker to isolate cell populations expressing various mACHR levels, by their resistance to the DHFR inhibitor methotrexate (13). The antagonist [3H]quinuclidinyl benzilate ([3H]QNB) bound to intact transfected CHO cells (14, 15) with an apparent dissociation constant (K(D)) of 75 pM, similar to our observations for cell homogenates (63 pM) (12) and comparable to that of the native porcine atrial mACHR (47 to 61 pM) (16). The K(D) for QNB was similar in cells expressing up to 2.5 x 10(6) receptors per cell.

In heart and brain, there are at least two agonist affinity states of the mACHR, probably resulting from interaction with G proteins (5, 16-18). Indeed, guanosine triphosphate (GTP) and its nonhydrolyzable analogs, which uncouple G proteins from receptors (1), convert high affinity mACHRs to low affinity (5, 16-18). In transfected cell homogenates, 30% of the mACHRs bound the agonist carbachol with high affinity (Fig. 1A). Guanosine 5-(3-O-thio)triphosphate (GTP S) converted 70% of the high affinity sites to a low affinity. The agonist oxotremorine recognized 24% of the mACHRs with high affinity, and GTP S converted 45% of this population to a low affinity (Fig. 1B). These results (Table 1) are similar to those observed for native porcine atrial M2 mACHRs (16). The effect of pertussis toxin (PTX) on agonist binding was also studied (Fig. 1). PTX catalyzes the adenosine diphosphate (ADP)-ribosylation of certain G proteins, abolishing their interaction with receptors, which in turn decreases the affinity of receptors for agonists (1). PTX treatment of transfected cells decreased the number of high affinity carbachol and oxotremorine binding sites to an extent comparable to the decrease caused by GTP S (Fig. 1 and Table 1), confirming that the M2 mACHR interacted with endogenous G proteins of CHO cells. In addition, multiple agonist binding states are a property of a single mACHR subtype; the high affinity state results from G protein interaction.

To determine whether the interaction of the recombinant mACHR with G proteins resulted in coupling to biochemical responses, we investigated the effects of carbachol on two second messenger systems, AC and PLC. Experimental conditions (10, 19-21) were selected to optimize these responses. Carbachol-induced inhibition of AC was determined from intracellular adenosine 3,5-monophosphate (cAMP) levels after stimulation with forskolin (21, 22). To ensure that changes in cAMP levels would not be influenced by changes in cAMP phosphodiesterase activity (21), we used the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX). Half maximal inhibition (ED50) of forskolin-induced cAMP accumulation occurred at 7.1 x 10(-8)M carbachol, and up to 76% of the 16.5-fold induction was inhibited by 10(-4)M carbachol (Fig. 2A). Similar results were obtained with incubation times of 10 or 30 minutes. Treatment of the transfected CHO cells with carbachol also resulted in enhanced formation of inositol phosphates. Carbachol evoked a 3.5- to 4.8-fold increase in the formation of inositol trisphosphate (IP3) and bisphosphate (IP2), the primary products of PLC-catalyzed hydrolysis of poly-phosphoinositides (2). The increase in IP3 and IP2
An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover.

formation occurred rapidly, reaching a maximum within 1 minute; this was followed by a slower linear accumulation of inositol monophosphate (IP1), probably resulting from dephosphorylation of IP3 and IP2 and from slow hydrolysis of phosphatidylinositol by PLC (2). In subsequent experiments phosphoinositide (PI) hydrolysis was measured by incubating the cells with carbachol for 30 minutes to allow maximal IP1 accumulation, while blocking further dephosphorylation by LiCl (23) and monitoring IP1 (24). The ED50 for carbachol-stimulated PI hydrolysis was 6 10(-6)M: a maximal stimulation of 4.5-fold was achieved at 10(-3)M (Fig. 2A). Neither biochemical response could be evoked in nontransfected cells by carbachol (see below).

The muscarinic antagonist atropine has similar affinity for different mACHR subtypes, whereas the antagonist pirenzepine has greater affinity for M1 than M2 mACHRs (6). We previously established the cloned porcine atrial mACHR as M2 by its low affinity for pirenzepine and high affinity for atropine (12). Each compound was equally effective in antagonizing the effects of carbachol on AC and on PI hydrolysis, confirming that both responses were mediated by the M2 mACHR (Fig. 2B). The difference in the affinity of the two antagonists for the M2 subtype was reflected by their differential potency in blocking the effects of carbachol (Fig. 2B).

In view of the possibility that the 85-fold difference in ED50 values between the two responses could have resulted from the different conditions under which they were measured (Fig. 2A), the ability of an endogenous receptor in CHO cells to regulate these responses was tested under similar conditions. Thrombin-evoked PI hydrolysis and AC inhibition with similar efficacy (ED50 = 5 to 10 nM); thus, the difference in the response to carbachol is not an artifact of the experimental conditions. To further investigate whether the coupling of the M2 mACHR to PI hydrolysis was less efficient than coupling to AC, transfected cell populations expressing different mACHR levels were studied (Fig. 3). The stimulation of PI hydrolysis was highly dependent on receptor number, reaching a plateau above 1.45 10(6) receptors per cell (Fig. 3A). In contrast, the inhibition of AC was similar at each receptor number studied (Fig. 3B). Neither effect could be evoked in nontransfected cells, demonstrating that endogenous mACHRs [less than 100 sites per cell (12, 13)] do not contribute to the response seen here.

The PTX-sensitive G proteins include G(i), G0 (1), and a G protein that may couple PLC (G(p)) (1, 3). In some cell types G(p) is not sensitive to PTX, suggesting that there is more than one G(p) species (19, 20). To determine whether PTX could distinguish between the coupling of a single mACHR subtype to different effectors in the same cell, we investigated its effects on carbachol-stimulated responses in the transfected cells. The AC response was 8.7-fold more sensitive to PTX than the PI response (Fig. 4). These results are surprising because the less efficiently coupled PI response might be expected to have higher PTX sensitivity if both responses were coupled through the same G protein. To investigate the relation between the PTX sensitivity of the biochemical responses and the in vivo ADP-ribosylation of PTX substrates in the transfected cells, we assayed membranes prepared from cells treated with various PTX concentrations to determine the residual amount of unmodified PTX substrate by in vitro ADP-ribosylation (Fig. 4). At concentrations sufficient to abolish the AC but not the PI response (1 to 30 ng/ml), the membranes contained significant levels of nonribosylated PTX substrate, whereas at higher concentrations, sufficient to abolish both responses, nonribosylated PTX substrate was not detected (Fig. 4). Thus, different G proteins may couple the M2 mACHR to these effector systems in CHO cells, or alternatively the two responses are coupled differentially via the same G protein.

Although we have demonstrated that a single M2 mACHR subtype can regulate multiple biochemical events, its inefficiency in mediating PI hydrolysis in CHO cells raises questions about the biological significance of this coupling. The high level of recombinant receptor expression could allow the detection of inefficient coupling to G(p) that may not occur at lower receptor levels. Nevertheless, the level of carbachol-induced PI hydrolysis we observed is comparable to that mediated by endogenous thrombin receptors present at physiological levels. The PTX sensitivity of mACHR-stimulated PI turnover in CHO cells contrasts with the lack of sensitivity in other cells (20), suggesting the involvement of different G proteins. The low efficiency of M2 mACHR-mediated PI hydrolysis could reflect its weak interaction with the G(p) in CHO cells. Alternatively, G(p) levels could be low relative to G(i) and therefore require higher receptor levels for efficient coupling to PLC.

Previous studies have suggested that different mACHR subtypes mediate different responses. For example, in rat brain, pirenzepine is 15-fold more potent in antagonizing carbachol-induced PI hydrolysis than AC inhibition, suggesting that these responses are mediated by the M1 and M2 subtypes, respectively (8). Here we have demonstrated that a single mACHR subtype can be coupled to more than one effector system. These findings indicate that the ability of an individual receptor subtype to recognize various effector systems is differential, rather than exclusive, and may be determined by the cellular context in which it is evoked.
An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover.

REFERENCES AND NOTES

13. To increase the expression of the mAChR cDNA through coamplification of DHFR sequences, we cultured the transfected cells in the presence of increasing concentrations of methotrexate (up to 500 nM) (12). Populations expressing from 2.4 10(5) to 2.5 10(6) QNB sites per cell were thus selected. Nontransfected CHO cells, as well as cells transfected with a similar vector containing OKT4 complementary DNA sequences (D. Smith and D. Capon, unpublished results) expressed less than 100 QNB sites per cell.

14. Binding studies were carried out as described (12). Nonspecific binding was determined in the presence of 10 M atropine and was below 15 or 5% of the total binding for intact cells and homogenates, respectively. Saturation curves were analyzed by the LIGAND computer program (15). Competition binding experiments, in which the binding of [3H]QNB was displaced by carbachol or oxotremorine, were analyzed by computer-fit least-squares analysis, and the best fit was determined by analysis of variance (16).

An M2 muscarinic receptor subtype coupled to both adenyl cyclase and phosphoinositide turnover.

24. Polyphosphoinositide hydrolysis was assayed as follows: Confluent monolayer cultures were labeled with [3H]myo-inositol (2 Ci/ml) for 40 hours. Monolayers were then washed and incubated (37°C) for 45 minutes in phosphate buffered saline (PBS), followed by a 15-minute incubation in PBS containing 10 mM LiCl. The cells were suspended (1.5 10(6) cells per milliliter) in PBS containing LiCl and assayed in 1-ml aliquots. Because preliminary experiments revealed that carbachol stimulates a rapid increase in IP3 and IP2 levels followed by a slower and linear accumulation of IP1 (see text), an incubation time of 30 minutes was chosen to allow for dephosphorylation of IP3 and IP2 to form IP1, while preventing further dephosphorylation of the latter by including LiCl (24). Under these conditions IP1 accumulation served as indicator of PLC-catalyzed hydrolysis of phosphoinositides. After incubation with agonists or antagonists or both, the reaction was stopped by precipitation with trichloroacetic acid. The supernatants were extracted with diethyl ether, neutralized, and applied to Dowex-100 columns, on which inositol phosphates were separated (24).

25. The inhibition of AC-catalyzed formation of cAMP was assayed as follows: Confluent cells were harvested as in (18), washed once, and resuspended in PBS (5 10(5) cells per milliliter). Aliquots (1 ml) were equilibrated for 20 minutes at 37°C with 100 M IBMX. Muscarinic agonists, antagonists, and forskolin (10 M) were then added, and incubation was continued for 10 minutes. The cells were pelleted, resuspended in buffer, boiled for 10 minutes, and centrifuged (5 minutes, 10,000g), and the supernatants were assayed for cAMP content by radioimmunoassay (22).

26. This work was supported by Genentech, Inc., and by NIH grants CA16417 (to J.R.) and HL23632 (to M.S.). 17 July 1987; accepted 2 October 1987

Table: 1. Computer-fitted parameters of agonist (carbachol or oxotremorine) binding to homogenates of the transfected CHO cells. The data were derived from analysis of the competition displacement data shown in Fig. 1 (14). In all cases the best fit was with a two-site model. Values are the means SEM of at least three experiments.

Photo: Fig. 1. Binding of muscarinic agonists and the effect of GTP S and pertussis toxin (PTX). The displacement of [3H]QNB binding by (A) carbachol and (B) oxotremorine was studied in homogenates from transfected CHO cells expressing 1.45 10(6) mAChRs per cell (14). The cells were incubated for 4.5 hours in the absence () and presence () of PTX (100 ng/ml) prior to homogenization. Homogenates (15 g of protein, 150 pmol QNB sites) of untreated cells were assayed in the absence () or presence () of GTP S (100 M). Homogenates of PTX-treated cells were assayed in the absence of GTP S (). The specific binding of [3H]QNB was not affected by the various treatments and ranged from 64.8 to 65.9 pmol. Each value is the mean of at least three experiments. Standard errors were normally less than 10% of the means. Computer-fitted binding parameters are summarized in Table 1.

Photo: Fig. 2. The effect of carbachol on cAMP formation and PI hydrolysis and its antagonism by atropine and pirenzepine. (A) Inhibition of forskolin-induced accumulation of cAMP () and stimulation of PI hydrolysis () by carbachol (means SEM of three and four experiments, respectively). Cells expressing 1.45 10(6) mAChRs per cell were equilibrated with IBMX (100 M) and treated with forskolin (10 M) and varying concentrations of carbachol (25). The level of cAMP in nontreated cells and in cells treated with IBMX alone was 4.0 0.2 and 7.5 0.5 pmol per 10(6) cells, respectively. Forskolin increased cAMP levels to 124.0 24.0 and 35.1 12.2 pmol per 10(6) cells in the absence or presence of 0.1 mM carbachol, respectively (that is, the maximal inhibition was 76.4 15.0%). Cells of the same population were assayed for carbachol-stimulated PI hydrolysis (24). Accumulated IP1 levels were 33.8 5.2 fmol per 10(6) cells in nonstimulated cells and 153.1 32.6 fmol per 10(6) cells in cells stimulated with 1 mM carbachol (that is, the maximal stimulation was of 4.5 0.5-fold. (B) Effect of the muscarinic antagonists atropine (and) and pirenzepine (and) on carbachol-induced inhibition of cAMP accumulation () and stimulation of PI hydrolysis (and), at 0.1 mM carbachol. Representative results from one of two experiments are shown. Half-maximal inhibition of both actions of carbachol was achieved at 1.3 10(-8)M atropine or 1 10(-5)M pirenzepine.

Photo: Fig. 3. The effect of mAChR expression level on the biochemical response induced by carbachol. Transfected cell populations expressing various levels of the recombinant mAbR (13) were assayed for carbachol-induced activation of PI hydrolysis (A) and inhibition of forskolin-induced cAMP formation (B), as in Fig. 2. The fold stimulation depicts the ratio of IP1 levels in the presence of carbachol relative to the level in its absence, and the fold inhibition depicts the ratio of cAMP level in the absence of carbachol relative to the levels in its presence. The values are means of three experiments.
An M2 muscarinic receptor subtype coupled to both adenyl cyclase and phosphoinositide turnover.

where the standard errors were less than 10% of the means. The receptor levels in the different cell populations, as determined by Scatchard analysis of [3H]QNB binding (15), were (in QNB sites per cell) 2.4 \(10^5\) (), 6 \(10^5\) (), 1.45 \(10^6\) (), and 2.5 \(10^6\) (). Nontransfected CHO cells () had less than 100 sites per cell.

Photo: Fig. 4. Differential inhibition of the effects of carbachol by PTX. Carbachol-induced inhibition of AC () and activation of PI hydrolysis () were measured in cells treated with varying concentrations of PTX (4.5 hours at 37°C). The values are means of four experiments, where the standard errors were normally less than 15% of the means. Cyclic AMP and IP1 levels determined in cells not stimulated with carbachol were not significantly affected by such treatment with PTX. Half-maximal inhibition was at 0.3 and 2.6 ng of PTX per milliliter for the cAMP and PI responses, respectively. Membranes prepared from parallel incubations of cells with PTX were also subjected to in vitro ADP-ribosylation by PTX and analyzed by SDS gel electrophoresis. The 32P-labeled nicotinamide adenine dinucleotide (NAD) labeled PTX substrates migrated as a band of M(r) 40,500 330 (n = 4 experiments), which was excised from the gels and assayed for radioactivity. The results of a representative experiment () are expressed as the percentage of the maximal in vitro ADP-ribosylation, occurring in membranes from nontreated cells, where the amount of [32P]NAD incorporated was 240 fmol per milligram of membrane proteins.